Amortization does not enhance the max-Rains information of a quantum channel
نویسندگان
چکیده
Given an entanglement measure E, the entanglement of a quantum channel is defined as the largest amount of entanglement E that can be generated from the channel, if the sender and receiver are not allowed to share a quantum state before using the channel. The amortized entanglement of a quantum channel is defined as the largest net amount of entanglement E that can be generated from the channel, if the sender and receiver are allowed to share an arbitrary state before using the channel. Our main technical result is that amortization does not enhance the entanglement of an arbitrary quantum channel, when entanglement is quantified by the max-Rains relative entropy. We prove this statement by employing semi-definite programming (SDP) duality and SDP formulations for the max-Rains relative entropy and a channel’s maxRains information, found recently in [Wang et al., arXiv:1709.00200]. The main application of our result is a single-letter, strong-converse, and efficiently computable upper bound on the capacity of a quantum channel for transmitting qubits when assisted by positive-partialtranspose (PPT) preserving channels between every use of the channel. As the class of local operations and classical communication (LOCC) is contained in PPT, our result establishes a benchmark for the LOCC-assisted quantum capacity of an arbitrary quantum channel, which is relevant in the context of distributed quantum computation and quantum key distribution.
منابع مشابه
Decoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملA More General Version of the Costa Theorem
In accordance with the Costa theorem, the interference which is independent of the channel input and known non-causally at the transmitter, does not affect the capacity of the Gaussian channel. In some applications, the known interference depends on the input and hence has some information. In this paper, we study the channel with input dependent interference and prove a capacity theorem that n...
متن کاملMulti-Party Quantum Dialogue with the Capability to Expand the Number of Users at Runtime
Quantum dialogue is a type of quantum communication in which users can simultaneously send messages to each other. The earliest instances of quantum dialogue protocols faced security problems such as information leakage and were vulnerable to intercept and resend attacks. Therefore, several protocols have been presented that try to solve these defects. Despite these improvements, the quantum di...
متن کاملTeleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کاملEntanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices
A bipartite quantum interaction corresponds to the most general quantum interaction that can occur between two quantum systems. In this work, we determine bounds on the capacities of bipartite interactions for entanglement generation and secret key agreement. Our upper bound on the entanglement generation capacity of a bipartite quantum interaction is given by a quantity that we introduce here,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.04907 شماره
صفحات -
تاریخ انتشار 2017